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Abstract

Social learning and rational disagreement have been studied in environments in which

agents are either homogeneous or the distribution of types is known. We study social

learning under unobserved heterogeneity, where the distribution of types is unknown

and is itself the subject of learning. This dual learning process unlocks a number of

new results. Rational agents display confirmation bias. Learning is local: individuals

place greater weight on opinions closer to their own and rationally discount more

divergent views. Not only is there asymptotic disagreement, but social learning can

polarize beliefs. Dual learning also provides a basis for social identification and group

formation. We explore applications to political opinion formation, extremist behavior,

and choice of news media.

The diversity of our opinions does not proceed from some men being more ra-

tional than others but solely from the fact that our thoughts pass through diverse

channels and the same objects are not considered by all.

Descartes, Discourse on Method.
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1 Introduction

Belief formation occurs not merely through introspection but by observing the opinions of

others. Social learning governs behavior in a number of domains, including consumption

decisions, occupational choice, political preferences, and scientific beliefs. Yet our under-

standing of how we learn from others is still incomplete.

The problem hinges on precisely how one should respond to another person’s opinion. The

rational response is context-dependent. It depends on the underlying structure of the popula-

tion, including the information available about its structure. When agents are homogeneous,

differing only in their private information, individuals observing each others’ opinions learn

to agree (Aumann, 1976; Geanakoplos and Polemarchakis, 1982). When agents are hetero-

geneous, but each agent’s type is known, individuals may fail to agree. In this paper, we

show that when agents are heterogeneous and individual types are unobservable, individuals

may not only fail to agree but also display rational forms of confirmation bias and other

anomalous patterns of behavior.

Social learning in a context of unobserved heterogeneity becomes a process of dual learning:

by observing the opinions of others an agent learns both about his parameter of interest

and the structure of the heterogeneity in the population. Encountering an agent with a

divergent opinion could now mean that this agent is importantly different from himself. As

such, learning is local: individuals place greater weight on opinions closer to their own and

rationally discount highly divergent views. This unlocks a number of new results, including

non-monotonicities in belief formation, belief polarization, and social identification through

social learning.

There are many real-world examples of dual learning processes. The following presents four

such examples. The first two—restaurant choice and political opinion—return several times

throughout the paper to illustrate our results.

Restaurant. Restaurant choice is a canonical example of social learning.1 Under unobserved

heterogeneity, a negative review of a restaurant can either mean that the restaurant is of

low quality or that the reviewer has different preferences to oneself. The more positive

experiences one has of the restaurant, the more likely one is to discount a negative reviewer’s

opinion as proceeding from different preferences.

Politics. Individuals may form their political beliefs by sharing opinions, but may also

1Expositions employing this example include Becker (1991), Banerjee (1992), Kirman (1993), Smith and
Sorensen (2000), Ellison and Fudenberg (1995),Chamley (2004), and Eyster and Rabin (2014).
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retain distinct preferences over policies due to different normative values and/or interpreta-

tion of evidence. The larger the divergence in opinions, the more likely one is to attribute

disagreement to underlying differences.

Technological Innovation. Empirically consistent patterns in innovation diffusion are

often explained as the result of heterogeneity among an innovation’s potential adopters.2

A prime example is Munshi (2004) who studies the diffusion of high yield varieties of rice

and wheat during the Indian Green Revolution. Rice yields were particularly sensitive to

variations in factors like soil characteristics and managerial inputs that are not easy to

observe. Munshi finds evidence that growers came to place less weight on their neighbors’

rice-growing decisions and outcomes than they do in the case of wheat.

Scientific Theories. Experts equally fluent in a scientific discipline often disagree.3 One

possible source of disagreement is the diversity in inferences drawn from evidence. Bayesian

econometricians focus less on statistically significant p-values, and people may be convinced

to different degrees of an instrumental variable’s excludability or a theoretical model’s as-

sumptions. The different lenses through which we filter empirical observations, including

scientific research, can lead to a diversity of opinion. Hence, experts may attribute disagree-

ment to different dispositions to evidence.

The dual learning process that we study, arising from unobserved heterogeneity, unlocks a

number of new results. The following is a non-exhaustive summary.

Our first result establishes the model’s primary mechanism: learning is local in the sense

that individuals place more weight on opinions closer to their own. By increasing the dif-

ference in opinions, this weight can be made arbitrarily close to zero. We then ask how one

responds to changes in another’s opinion. We find that the answer depends on which of

the two countervailing forces of dual learning dominates. This leads to non-monotonicity in

disagreement, whereby, encountering someone with a slight difference in opinion can have a

larger influence on one’s beliefs than if they were to hold a starkly different opinion.

In the long run, after exchanging opinions with enough other individuals, one’s own opinion

will converge. At this point, we observe social identification through social learning: learning

2See Jensen (1982), Mahajan and Peterson (1985), Jeuland (1987), and Young (2009).
3Galileo battled with the Catholic church and fellow scientists alike over the heliocentric model of the

solar system, the germ theory of disease was contested for centuries, and there was longstanding dissent
over theories of continental drift. Contemporary science hosts disagreements over the fundamental roles
of randomness and measurement in quantum mechanics (Schlosshauer, Kofler and Zeilinger, 2013) and
the plausibility of group selection in evolutionary biology (et al. Abbot, 2011). In economics there has
been disagreement over topics like the efficacy of monetary policy in stimulating the real economy and the
employment effects of raising the minimum wage.
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an additional individual’s opinion will serve almost entirely as a means for assessing the

degree of similarity between the other individual and oneself.4 Hence dual learning provides

a basis for social identification through similarity of beliefs (Akerlof and Kranton, 2000,

2010).

We then consider extensions to the basic framework, beginning with introducing our model

into the observational learning environment (Bikhchandani, Hirshleifer and Welch, 1992;

Banerjee, 1992) in which agents learn more coarsely by observing the actions performed by

others. We show that our characterization of heterogeneity has competing welfare effects in

observational learning : (1) agents will never converge with certainty to their optimal action

in the limit of learning and (2) the process can avoid falling into an information cascade

when it would have done so with certainty under homogeneity.

Another extension characterizes the behavior of media consumers.5 Consumers choose to

acquire information from sources that confirm their own beliefs. Some come to place enough

trust in a media source to rely on its reports in place seeking out their own information. In

existing models, the media’s effect on public disagreement requires that the population itself

not be aware of the disagreement. Otherwise, the agents will condition on the disagreement

and the media’s effect will cease. In our model, the public’s awareness of disagreement can

strengthen the disagreement.

Section 2 provides the background in terms of probability and decision theory for our more

general approach to social learning which takes into account unobserved heterogeneity. Sec-

tion 3 introduces the model of dual learning. Section 4 presents the main results of the

paper, starting with the most basic setting and gradually increasing in complexity. Section

5 considers extensions of the model and Section 6 concludes.

2 Related Literature

A discussion of the rational response to someone’s beliefs must begin by specifying the form

that rational belief will take and how it will respond to evidence. For this, we look to seminal

figures in the development of the subjectivist (or personalistic) view of probability, Ramsey

(1931), de Finetti (1937), and Savage (1954), who show that, if an individual satisfies certain

4For example, following many conversations about climate policy with various people, hearing an addi-
tional person’s view may have a negligible effect on one’s own opinion, but can be quite instructive about
the similarity or differences in basic values.

5Gentzkow, Shapiro and Stone (2016) review the related literature on media bias.
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basic coherence requirements, then their beliefs can be characterized by probabilities and they

will update according to conditioning in response to new evidence. At this baseline level of

rationality, there is no imperative that individuals come to agreement upon discovering that

they hold conflicting views—it depends exclusively on how the other’s beliefs fit into their

respective models of the world.

“The criteria incorporated in the personalistic view do not guarantee agreement

on all questions among all honest and freely communicating people, even in

principle.”
Savage, (1954)

In the development of classical game theory, these minimal coherence requirements were

insufficient to provide general tractability for games with incomplete information, that is,

games in which some players are uncertain about the game being played. In such games, a

player’s optimal action will depend on an infinite hierarchy of beliefs: their first-order beliefs

about the game, second-order beliefs about the other players’ beliefs, third-order beliefs

about the other players’ beliefs about their beliefs, and so on ad infinitum. Harsanyi (1967)

proposed the powerful simplifying assumption that it be common knowledge that players’

beliefs are mutually consistent: any discrepancies between the various players’ beliefs are

driven solely by differences in private information.6

As shown by Aumann (1976), a strong implication of the mutual consistency assumption is

that rational individuals cannot publicly disagree. More precisely, Aumann shows that with

mutual consistency, if individuals’ beliefs about an event are common knowledge, then they

will agree.7

But of course, public disagreement is pervasive. Roughly 63% of Americans are “absolutely

certain” of the existence of God, while 9% do not even believe in God, 48% believe that global

climate change is due to human activity while 31% believe the causes to be natural, and

15% believe that the collapse of the World Trade Center resulted from controlled demolition

while 75% do not.8

An account of the manifest public disagreement requires a weakening of the mutual con-

sistency assumption. One weakening of the assumption that can sustain disagreement is

6Our discussion highlights the fact that the mutual consistency assumption is stronger than the common
prior assumption, though these are often treated as equivalent in the literature. Mutual consistency entails
both a common prior and common knowledge of the information structure.

7See Geanakoplos and Polemarchakis (1982), Bacharach (1985), and Samet (1990) for extensions and
Rubinstein and Wolinsky (1990) for a discussion of the Agreeing to Disagree results spawned by Aumann.

8(Pew, Religious Landscape Study, 2014),(Pew, The Politics of Climate, 2016),(Angus Reid, Public Opin-
ion, 2010)
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to abandon the coherent belief paradigm altogether. For example, disagreement could be

driven by confirmation bias (Rabin and Schrag, 1999; Fryer, Harms and Jackson, 2015), mo-

tivated reasoning (Lord, Ross and Lepper, 1979; Kunda, 1990; Bénabou and Tiróle, 2016),

bounded memory (Wilson, 2014), or rule-of-thumb belief updating procedures (DeGroot,

1974; DeMarzo, Vayanos and Zwiebel, 2003).

We could alternatively deviate from mutual consistency by allowing individuals to begin

with heterogeneous prior beliefs.9 In this case, classic results in Bayesian consistency (Doob,

1949) and the merging of opinions (Blackwell and Dubins, 1962; Kalai and Lehrer, 1994)

guarantees that agreement is almost surely reached over time.

As has been noted in the literature, robust disagreement can emerge when we allow for

heterogeneity beyond mere differences in prior beliefs. For example, heterogeneous interpre-

tations of public signals can explain the presence of asset trading (Harris and Raviv, 1993;

Kandel and Pearson, 1995; Acemoglu, Chernozhukov and Yildiz, 2016). In contrast, the No

Trade Theorems of Milgrom and Stokey (1982) and Tirole (1982) predict that risk-averse

traders with mutually consistent beliefs will not engage in trade.

Unobserved heterogeneous priors have been studied in the context of information aggrega-

tion. Sethi and Yildiz (2012) find that if agents have heterogeneous prior beliefs that are

unobservable but correlated, then the information is fully aggregated through successive

declarations of beliefs. Sethi and Yildiz (2016) show that when agents have unobservable

heterogeneous prior beliefs, agents will come to favor observing the opinions of those with

whom they have become most familiar.

Smith and Sorensen (2000) study the asymptotic beliefs and actions of a population com-

prised of heterogeneous types in the context of observational learning. The important dif-

ference between their model and ours is that agents in our model receive a signal of their

own parameter of interest (e.g. utility from performing an action) and agents in their model

receive signals of the state of the world which then determines their parameter of interest.

This difference is the fundamental driver of our results and leads to distinct and interesting

outcomes when applied to observational learning (see section 5.1).

9For a discussion of the rationale for using models with heterogeneous prior beliefs see Morris (1995)
and for applications see Dixit and Weibull (2007), Van den Steen (2011), Glaeser and Sunstein (2013), and
Benoit and Dubra (2014).
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3 Dual Learning

In our model, agents are sorted into heterogeneous and unobservable types. Agents of the

same type seek to learn the same parameter of interest. In the examples, this translates to

agents of the same type having the same tastes, values, or dispositions towards evidence.

Each agent receives an informative signal of his parameter of interest and observes the

opinions of the other agents from which he performs dual learning: he learns about his

parameter as well as the likelihood that other agents are of the same type.

A way to visualize dual learning is to consider a variant of the classic ball and urn model.

The following illustrates the process of dual learning and also foreshadows our result of

‘non-monotonicity in disagreement.’

3.1 A Tale of Two Urns

Imagine that before you is an urn containing 100 green and red balls. You are asked to guess

the number of green balls in the urn and will be paid in accordance with how close your

guess Ĝ is to the actual number of green balls G.10 You are permitted to draw a ball from

the urn 10 times (with replacement) and your draws come up with 8 green and 2 red balls.

Suppose there is also another participant who makes 30 draws which you observe prior to

making your guess. The left panel in Figure 1 illustrates how your guess would change by

observing that the other participant, whose first 10 draws were identical to yours (8 green

and 2 red), continued drawing only red balls, ending with a total of 8 green and 22 red.11 On

the y-axis is your guess Ĝ (the posterior expected number of green balls) and on the x-axis

is the additional red balls drawn by the other participant.

Now imagine there is also a second urn containing 100 green and red balls and you are un-

certain which of the two urns the other participant is drawing from. Firstly, this uncertainty

will lead you to place less weight on the other’s draws than your own when forming your

guess. Secondly, you will engage in dual learning—the weight you place on the other’s draws

will be updated based on the similarity of their draws to your own. In our example, as

the other participant continues drawing red balls, it becomes increasingly likely that they

are drawing from a different urn than you. Hence, you begin to place less weight on their

draws in forming your guess. The right panel illustrates how dual learning leads your guess

10For example, your payment could be given by the quadratic loss function 1− ( G
100 −

Ĝ
100 )2.

11The simulation assumes a uniform prior over the number of green balls in the urns, π(G) = 1
101 for

G = 0, 1, 2, ..., 100.
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One Urn Two Urns

Figure 1: Both diagrams depict how your guess Ĝ changes as the other participant draws
additional red balls. In the left panel there is a single urn and in the right there are two
urns. At the origin you and the other participant have each drawn 8 green and 2 red balls.

to move non-monotonically as we increase the disparity in the color frequency of the other

participant’s draws and your own.

3.2 A Model of Dual Learning

In a standard social learning model, a population of agents i ∈ N seek to learn a single

parameter θ∗ ∈ Θ. Our model extends this to permit unobserved heterogeneity so that

agents i and j seek to learn possibly distinct parameters θ∗i and θ∗j .

Nature first partitions the population
⋃T
t=1Nt = N where agents i and j belonging to the

same element of the partition Nt are said to be of the same type. The partition is formed

randomly, with an agent being independently assigned to Nt with probability γt. We may

assume the vector of assignment probabilities γ = (γ1, γ2, ..., γT ) to be either known or chosen

by nature from a known distribution, but the realized partition is unknown.

Nature then independently assigns θt to each member of the partition Nt according to the

known probability measure Π(·) with density π(θ). Agents of the same type seek to learn

the same parameter, that is, for i and j in Nt, θ
∗
i = θ∗j = θt.

Each agent receives a signal si ∈ S in accordance with a conditional distribution with

density fθ∗i (s). The family of conditional densities fθ(s) are one-to-one,12 continuous in

θ and s, and the accompanying measures Fθ are mutually absolutely continuous.13 An

12If fθ(s) = fθ′(s) almost everywhere in S, then θ = θ′.
13Mutual absolute continuity provides that almost surely no single signal will perfectly reveal the distri-
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agent then merges his signal with any of the other information he acquires (e.g. other

agents’ actions or opinions) to obtain his posterior probability measure Πi(·|Ii) defined as

Πi(A|Ii) ≡ Pr(θ∗i ∈ A|Ii) for measurable A ⊂ Θ with density πi(θ
∗
i |Ii). Observing other

agents’ actions or opinions can also be informative of whether they are of the same type

as himself. Define Qij(Ii) = Pr(j same type as i |Ii) for j 6= i to be the collection of i’s

posterior perceived similarity.

Each agent then uses his information to select an action xi from the set X maximizing his

expected payoff E[u(xi; θ
∗
i )|Ii]. The particular form of the payoff function will be specified

for each application.

As in Eyster and Rabin (2014), our results are most crisply articulated when agents have

clarity in their inferences. For this reason, our primary analysis (section 4) allows agents

to observe each others’ opinions θ̂(si). When parameters are real-valued Θ ⊂ R, we follow

Sethi and Yildiz (2013, 2016) and specify an agent’s opinion to be the expectation of his

parameter given only his private information θ̂(si) = E[θ∗i |si]. More generally, we can think

of an agent’s opinion as some sufficient statistic of his private information. Qualitatively,

our results remain under more coarse learning.

4 Interactive Belief Formation

This section analyzes the basic workings of the model. Beginning with a characterization

of disagreement in the simplest setting of two agents and two actions, we move gradually

toward increasing generality. Each step toward generality provides an additional insight into

the role of dual learning in belief-formation and disagreement.

4.1 Two Agents & Two Actions

Our analysis begins by considering two agents 1 and 2 who are each faced with a choice

between two actions xi ∈ {0, 1}. Agents are assigned one of two possible parameter values

θ∗i ∈ {0, 1} whereby the payoff to choosing the action xi = θ∗i exceeds the payoff to choosing

xi 6= θ∗i . Each agent assigns a prior probability of π to θ∗i = 1 and a prior of π̃ to the other

agent being of the same type. Each agent observes his signal si ∼ fθ∗i and forms his opinion

θ̂(si) = E[θ∗i |si]. In this setting, an agent’s opinion coincides with what the literature calls

bution from which it is drawn.
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an agent’s private belief

θ̂(si) = p(si) = Pr(θ∗i = 1|si). (1)

From this, we obtain a natural notion of disagreement whereby 1 and 2 disagree when

p(si) < π < p(sj), that is, their opinions are pushed in different directions from the prior.

Each agent then observes the other’s opinion. We take the perspective of agent 1 and simplify

notation. Denote 1’s posterior belief by P (s) = Pr(θ∗1 = 1|s1, p(s2)) and the posterior

perceived similarity by Q(s) = Pr(2 same type as 1 |s1, p(s2)) where s = (s1, s2).

As a benchmark for comparison, consider how agents update upon observing each other’s

opinions when they are certainly of the same type θ∗1 = θ∗2 = θ∗. In this case, it is straight-

forward to see that both agents come to agreement on what we call the shared opinion

θ̂(s1, s2) = E[θ∗|s1, s2] which simplifies

θ̂(s1, s2) = p(s1, s2) = Pr(θ∗ = 1|s1, p(s2)) (2)

Unobserved heterogeneity adds an additional layer of complexity to the updating procedure.

Fortunately, we can compute agent 1’s posterior simply as the weighted average between his

own opinion and the shared opinion where the weight is precisely the perceived similarity

P (s) = p(s1, s2)Q(s) + p(s1)(1−Q(s)). (3)

By inspection of (3), when the perceived similarity is small, agent 1 mostly disregards 2’s

opinion P (s) ≈ p(s1). Conversely, when the perceived similarity is close to unity, 1’s beliefs

resemble those of the standard model P (s) ≈ p(s1, s2).

The perceived similarity is itself revised upon observing opinions. It will be highest when the

agents receive, in a sense, similar signals and shrink as their signals diverge. More precisely,

following Bayes Rule we can write the perceived similarity

Q(s) =
f(s1, s2)π̃

f(s1, s2)π̃ + f(s1)f(s2)(1− π̃)
=

[
1 +

f(s1)

f(s1|s2)

1− π̃
π̃

]−1

(4)

where f(s) ≡
∫

Θ
fθ(s)dΠ(θ) is the marginal likelihood of receiving signals s, assuming that

they were drawn from the same distribution. As seen in (4), 1’s perceived similarity in-

creases upon observing the signals just in case f(s1|s2) > f(s1), that is, the likelihood of

receiving s1 from a distribution from which we already obtained s2 exceeds the uncondi-

tional likelihood of having drawn s1. With just two parameters, this inequality simplifies to

[f1(s1)− f0(s1)][f1(s2)− f0(s2)] > 0.
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The picture of interactive belief formation under dual learning is distinct from the standard

model. When two agents share their opinions, their beliefs are drawn closer, but generically,

we should not expect full agreement. Letting Pi(s) represent i’s posterior belief, the difference

in posterior beliefs is proportional to the difference in opinions

Pi(s)− Pj(s) =
(
1−Q(s)

)(
p(si)− p(sj)

)
. (5)

Thus full agreement only occurs when agents hold equivalent private information p(si) =

p(sj) or if they are certainly of the same type Q(s) = 1.

The behavior predicted by the dual learning model can depart strongly from that predicted

by the standard model. We shall see this difference in the following example.

4.1.1 Restaurant Example

Consider a new restaurant. If individual i chooses to dine there xi = 1, he receives either

high (ui = 1) or low (ui = 0) satisfaction. The payoff to any given visit is random and

depends on an unknown parameter θ∗i ∈ {0, 1}, with ui(1; θ∗i ) = θ∗i with probability 0.75.

Thus i’s expected payoff to dining at the new restaurant is 0.75 if θ∗i = 1 and 0.25 if θ∗i = 0.

Specify i’s payoff to not dining at the new restaurant xi = 0 to be ui(0) = 0.4 with certainty.

Assume agents’ prior beliefs are π = π̃ = 1
2
.

This example resembles Bala and Goyal (1998) in that an agent’s realized payoff operates

as a signal. Before addressing the decision problem, let us first see how beliefs evolve if both

agents repeatedly dine at the new restaurant and have opposed experiences.

Figure 2 illustrates the dynamics in agent 1’s beliefs when both agents repeatedly dine at

the restaurant and each time agent 1 receives high (u1 = 1) satisfaction and 2 receives low

(u2 = 0) satisfaction. Along the horizontal axis, we increase the number of times each has

dined at the restaurant. Under the standard model of learning, agents combine their opinions

and form the shared opinion p(s1, s2) which, due to their conflicting experiences, remains

unchanged from the prior. Allowing for multiple types, the disparity in satisfaction provides

increasingly strong evidence that agent 2 is of a distinct type to that of 1 and the perceived

similarity vanishes Q(s) → 0. This observation, taken together with equation (3) implies

that 1’s posterior P (s) quickly converges to his own opinion p(s1).

Consider how the agents’ decisions are affected by their divergent experiences. For simplicity,

suppose that an agent selects the dining option that maximizes his expected payoff, that
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Figure 2: Belief Dynamics. The diagram depicts the change in 1’s beliefs as we increase the
number of high payoffs s1 = (1, 1, ...) received by 1 and low payoffs s2 = (0, 0, ...) received
by 2.

is, each will dine at the new restaurant whenever it yields an expected payoff of at least

0.4.14 The ex ante expected payoff to dining at the new restaurant is 0.5, and thus both

agents choose this option. If the agents were homogeneous, then their persistent conflicting

experiences would lead both to continue dining at the new restaurant.

After one visit to the new restaurant, before observing agent 1’s opinion, agent 2’s low

satisfaction experience would reduce his expected payoff to dining at the new restaurant to

0.375. With no other information, agent 2 would not choose to dine there again. Upon

learning that agent 1 had received high satisfaction from the new restaurant, agent 2 would

revise his expected payoff to about 0.43 and would thus be willing to give the new restaurant

another chance. After a second visit to the new restaurant brings agent 2 low satisfaction,

he will not choose to dine there again, regardless of agent 1’s satisfaction.

We can formalize our observation from the restaurant example that disparity between opin-

ions leads one to place less weight on another’s opinion in the following proposition.

Proposition 1. Say that agent 1 and 2 agree if π < p(si) ≤ p(sj) or p(si) ≤ p(sj) < π and

disagree if p(si) < π < p(sj).

(a) If agent 1 and 2 agree, then the perceived similarity is strictly increasing as we increase

the certainty of either of their opinions.

14Given our objective of illustrating opinion formation, we set aside the questions of optimal or strategic
experimentation as studied in Bolton (1999) and section 5.4 of this paper.
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(b) If agent 1 and 2 disagree, an increase in the difference of their opinions reduces the

perceived similarity.

(c) Under maximal disagreement the perceived similarity vanishes and 1’s posterior belief

converges to his opinion: p(si)→ 0 and p(sj)→ 1 imply Q(s)→ 0 and thus |P (s)−p(s1)| →
0.

Proofs of this and all further propositions can be found in the appendix.

4.2 Two Agents & Continuum of Actions

We now expand the action and parameter spaces X = Θ = R. In doing so, we show that

increasing the disagreement between opinions can lead to more interesting, non-monotonic

changes in actions.

As before, an agent observes his signal si and forms his opinion θ̂(si) ≡ E[θ∗i |si]. Assume θ∗i

to be normally distributed θ∗i ∼ N (θ0, σ
2
0) and signals also normal distributed si ∼ N (θ∗i , σ

2)

so that an agent’s opinion is a sufficient statistic of his information.

Each agent then observes the other’s opinion, and updates his beliefs. If agents were ho-

mogeneous with certainty θ∗1 = θ∗2 = θ∗, then they would come to agreement on the shared

opinion θ̂(s) = E[θ∗|s], s = (s1, s2). For this section, payoffs are assumed to take the form

u(xi; θ
∗
i ) = −(xi − θ∗i )2. (6)

Agent i’s optimal action coincides with the posterior expectation of his parameter

x∗i = E[θ∗i |si, θ̂(s2)] = θ̂(s)Q(s) + θ̂(si)(1−Q(s)). (7)

How does 1’s action respond to a change in 2’s opinion? The answer to this will depend on

which of the two countervailing forces of dual learning dominates. Observe that s2 enters

(7) first through the shared opinion θ̂(s1, s2) and second in the perceived similarity Q(s).

We can think of the movement in the shared opinion as the direct effect of shifting s2. This

effect captures the change in 1’s beliefs if he takes 2’s opinion at face value and does not

consider the possible differences between them. Similarly, we can think of the adjustment of

the perceived similarity as the indirect effect of shifting s2. When 2’s opinion θ̂(s2) is made

increasingly dissimilar to 1’s opinion θ̂(s1) the indirect effect counteracts the direct effect
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and the net result will depend on which of these two effects dominates. In the following,

we continue the political opinion example from section 1 to show that the net change in 1’s

beliefs is not a foregone conclusion, but can vary on the domain of s2.

4.2.1 Politics Example

Suppose the space of political policies can be described by the real line. Let us now think

of si as i’s interpretation of a piece of evidence based on his epistemic and normative values

and θ∗i as i’s most preferred policy if he were to observe all the possible evidence. Specify i’s

interpretation of a piece of evidence as a noisy signal si = θ∗i +εi with εi distributed standard

normal. Individuals who share the relevant underlying values will be receiving signals about

the same preferred policy. Assume 1’s prior over his preferred policy θ∗1 is standard normal

and he receives evidence that suggests a policy of 0.7 = s1.

Figure 3 shows how 1’s choice of policy x∗1 = E[θ∗1|s] changes as we alter 2’s opinion. The

direct effect of s2 on the shared opinion θ̂(s1, s2) is represented by the positive dashed line in

the top sub-figure. The indirect effect of s2 on the perceived similarity is given in the bottom

sub-figure. Notice that the perceived similarity peaks near the point where 2’s opinions are

identical to 1’s (s2 = 0.7) and declines as 2’s opinion moves in either direction. When 1

and 2’s opinions are closest, the direct effect dominates and 1’s action moves in a positive

and roughly linear fashion. However, as 2’s opinion moves further away from 1’s in either

direction, the indirect effect dominates and 1’s action moves negatively with s2. We call this

pattern non-monotonicity in disagreement: when in close agreement 1 responds to changes

in 2’s opinion in a qualitatively similar way as the standard model, pushing 2’s opinion too

far leads 1 to respond in precisely the opposite manner of the standard model.

4.2.2 Moderating Extremists & Radicalizing Moderates

An important implication of non-monotonicity in disagreement relates to the processes of

moderating extremist or radicalizing moderate behavior. In the previous example, imagine

that higher actions are deemed more extreme and socially-undesirable. When confronted by

a far less extreme agent 2 (s2 ≤ −2) figure 3 shows that 1’s behavior will be almost entirely

unchanged. If agent 2 were in fact more extreme (s2 ≈ 0), which may mean that 2 advocates

performing some degree of socially-undesirable behavior, then 1 would reduce the extremity

of his actions.
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Figure 3: Non-Monotonicity in Disagreement. The diagrams illustrate the dependence of 1’s
beliefs and action on 2’s signal.

The converse observation is made by supposing instead that agent 1 is already moderate

in his behavior. There is more danger in him encountering a marginally more extreme

individual (s2 ≈ 1.5) than someone who is vastly more extreme (s2 ≥ 2.5).

We now formally characterize the portions of the domain on which 1’s action moves either

positively or negatively to changes in 2’s opinion. Consider as an analogue the identity

Revenue = Price × Quantity from first principles. Revenue’s response to a shift in the

price can be positive or negative depending on the price elasticity of demand. Similarly, the

response of 1’s action to changes in 2’s opinion will depend on the relative elasticity of the

perceived similarity. To simplify notation, let ∆(s) ≡ θ̂(s1, s2)− θ̂(s1).

Definition 2. Define ε ≡ −Q(s′)−Q(s)
Q(s′)+Q(s)

/
∆(s′)−∆(s)
∆(s′)+∆(s)

to be the elasticity of 1’s perceived simi-

larity Q(s) which is said to be relatively elastic if ε > 1 and relatively inelastic if ε < 1.

The following proposition makes the regularity assumption that θ̂(sj) < θ̂(s′j) implies θ̂(si, sj) <

θ̂(si, s
′
j). A similar (but less intuitive) statement could be made without use of this assump-

tion.

Proposition 3 (Non-Monotonicity in Disagreement). Agent 1’s action x∗1 = E[θ∗1|s]

moves positively (negatively) with a change in 2’s opinion θ̂(s2) if the perceived similarity

Q(s) is relatively inelastic (elastic).
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4.3 Larger Finite Population (n > 2)

In this section, we will see that dual learning in a larger population produces different

behavior than standard learning. In particular, we find persuasion in numbers: the opinions

of the many outweigh the opinions of the few or one, even if both sets of opinions are

equivalent in terms of information.

For example, consider customer product reviews. When many customers write reviews for a

product, there is a good chance that some proportion of them will share the same preferences

of the reader of these reviews. In contrast, when a single customer writes a review, the reader

of this review cannot be sure if the customer’s preferences match his own. Therefore, if many

customers report satisfaction from single uses of a product it can more strongly influence

the reader’s purchasing decision than if a single customer were to report satisfaction from

many uses of the product. In contrast, if it were known ex ante that everyone shared the

same preferences, then both sets of reviews would influence the reader’s beliefs identically.

To illustrate this, we continue the restaurant example from section 4.1.1.

4.3.1 Restaurant Example Cont.

Suppose that agent 1 has not yet dined at the new restaurant and must solicit the opinions of

his fellow agents prior to making his dining decision. We proceed by comparing three cases

(1) agent 1 observes agent 2’s repeated positive reviews (2) agent 1 observes the negative

reviews from agents 3, 4, ..., n, and (3) agent 1 observes both sets of reviews.

(a) (b)

Figure 4: Belief Dynamics. The diagrams depict the change in agent 1’s beliefs as we
increase the number of high payoffs s2 = (1, 1, ...) received by agent 2 and low payoffs
(s3, s4, ...) = (0, 0, ...) received by agents 3, 4, ... .

16



Suppose first that agent 1 observes that agent 2 repeatedly receives high satisfaction from

dining at the restaurant. The plot of P (s2) in Figure 4.a shows how agent 1’s beliefs update

after each of 2’s visits. Notice that, while 2’s positive experiences increase 1’s beliefs of his

own self receiving a high expected payoff from the new restaurant, the effect tapers off. It

becomes increasingly clear that 2’s expected payoff from the restaurant is high, but there is

no guarantee that he shares 1’s tastes.

Second, suppose that agent 1 observes each agent 3, 4, ...n receive low satisfaction from

dining at the new restaurant. The plot of P (s3, s4, ..., sn) in Figure 4.a reveals that these

observations drive 1 to certainty that he will obtain a low expected payoff from the new

restaurant. The effect is stronger in this case because there is a good chance that some

fraction of these agents share the same tastes as agent 1.

Finally, we turn to Figure 4.b to see the effect of agent 1 observing agent 2 receiving ever

more satisfying dining experiences and agents 3, 4, ..., n sequentially receiving low satisfac-

tion experiences. The plot of the shared opinion p(s2, s3, ..., sn) demonstrates that, if the

agents were homogeneous, then the conflicting experiences would lead 1’s beliefs to remain

unchanged from the prior. In contrast, the decline of P (s2, s3, ..., sn) reveals that the negative

experiences of the many dominates the positive experiences of the one. Observing enough

of these reviews will induce agent 1 to forgo dining at the new restaurant.

The following proposition describes persuasion in numbers. The phenomenon is most clearly

identified in an environment in which X and Θ are finite, the prior over the assignment

probabilities γ takes full support in the T -dimensional simplex, payoffs are finite, and x(θ) ≡
arg maxx∈X u(x; θ) varies in θ.

We say that agent j is certain x(θ∗j ) = x if Pr
(
x(θj) = x|sj

)
= 1 and agent k is boundedly

certain x(θ∗k) = y if δ < Pr
(
x(θ∗k) = y|sk

)
− Pr

(
x(θ∗k) = x|sk

)
< 1 for all x 6= y and some

δ > 0.

Proposition 4 (Persuasion in Numbers). Suppose agent i’s choice x∗i is informed by

the opinions of n < +∞ other agents, whereby nx ≥ 1 of these agents are certain x(θ∗j ) = x

and the remaining ny agents are boundedly certain that x(θ∗k) = y 6= x.

(a) If the population is homogeneous, then x∗i = x for all ny < +∞.

(b) With a positive ex ante chance of heterogeneity and ny sufficiently large, x∗i = y.
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4.4 Countably Infinite Population

What is the expected behavior of an agent’s beliefs in an arbitrarily large population? Imag-

ine that agent 1 observes his signal and the other agents’ opinions in sequence. In a standard

model, well-known results guarantee almost sure consistency of 1’s posterior for the true θ∗.

The heterogeneity in our framework precludes an immediate application of these results. To

make progress on this question, we must introduce some further notation.

Let Ω = ΘT × ∆T be the set containing the vectors of type parameters and assignment

probabilities ω = (θ1, θ2, ..., θT , γ1, γ2, ..., γT ), where ΘT is the T -fold product space (Θ ×
Θ × ... × Θ) and ∆T represents the T -dimensional simplex. The population signal density

belongs the finite mixture family gω(s) ≡
∑T

t=1 γtfθt(s), ω ∈ Ω and is said to be identified

just in case gω(s) = gω′(s) a.e. implies that both ω and ω′ assign the same proportion of

the population θ∗i = θ for all θ ∈ Θ (Teicher, 1963).15 An agent’s opinion θ̂(si) is a random

quantity such that s 7→ θ̂(s) is one-to-one with realized opinions belonging to a complete

separable metric space.

Define π∗ to be the true distribution of thetas throughout the population as assigned by

nature, i.e. π∗(θ) gives the proportion of the population with θ∗i = θ. Let Θ∗ ≡ supp(π∗)

be the finite support of π∗. Under the assumption of identifiability, as agent i continues

observing the opinions of the other agents, his posterior almost surely converges to a function

of only his own signal and the true distribution of parameters. Denote the vector containing

the signals of the first n members of the population by sn = (s1, s2, ..., sn) and let “⇒”

correspond to weak convergence.

Proposition 5 (Belief Convergence.). Suppose that Θ and S are complete separable

metric spaces endowed with their respective Borel sigma algebras with gω(s), ω ∈ ΘT ×∆T

comprising an identified finite mixture family. Then for almost all ω∗, as n→ +∞

Πi(·|sn)⇒ Πi(·|si, π∗) a.s. (8)

15Formally,
∑T
t=1 γt1(θt = θ) =

∑T
t=1 γ

′
t1(θt

′
= θ) for all θ ∈ Θ where ω = (θ1, θ2, ..., θT , γ1, γ2, ..., γT )

and ω′ = (θ1
′
, θ2

′
, ..., θT

′
, γ′1, γ

′
2, ..., γ

′
T ). See Yakowitz and Spragins (1968) and Lindsay (1995) for further

discussion of identified finite mixture models.

18



For continuity sets16 A ⊂ Θ, we can write i’s asymptotic posterior explicitly as

Πi(A|si, π∗) =

∑
θ∈Θ∗ fθ(si)π

∗(θ)δθ(A)∑
θ′∈Θ∗ fθ′(si)π

∗(θ′)
(9)

where δθ(A) = 1θ(A) is the Dirac measure assigning point mass at θ. If Θ is finite, we can

write i’s posterior probability mass function even more simply as

πi(θ|si, π∗) =
fθ(si)π

∗(θ)∑
θ′∈Θ∗ fθ′(si)π

∗(θ′)
. (10)

These expressions have a nice interpretation. If agent i momentarily sets his own signal

to the side and observes an infinite sequence of the other agents’ opinions, he will learn

the distribution of parameters throughout the population π∗. This distribution essentially

becomes his new prior distribution over θ∗i which he then updates by reintroducing his private

signal.

It is worth noting that the belief convergence obtained in Proposition 5 does not guarantee

that agents will likewise converge to their optimal action in the limit of learning. Section

5.1 discusses this in some detail.

In the limit of exchanging opinions, agents’ beliefs converge. At this point, observing an

additional agent’s opinion serves almost entirely as an indicator of their underlying sim-

ilarity. To examine the asymptotic behavior of i’s perceived similarity, let us revisit the

political opinion example where we left off in 4.2.1. We state this observation formally in

the proposition that follows.

4.4.1 Politics Example Cont.

Imagine now that agent 1 continues conversing with other agents, learning their opinions

about the optimal policy. After enough conversations, agent 1 will learn the distribution of

opinions throughout the population. With that, the effect that each additional conversation

has on his own view declines to zero. However, each conversation continues to be instructive

for 1 to assess the similarity between the other agents and himself. In the long run, learn-

ing an individual’s opinion functions almost entirely for social identification: serving as an

indicator of the similarity in values between this individual and himself.

16Sets A for which the boundary has an asymptotically measure zero boundary Πi(∂A|si, π∗) = 0. In
other words, none of the θ∗i lie on the boundary of A.
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Let ρ be the Prokhorov metric defined over the space of measures over Θ. For our purposes,

it is sufficient to know that weak convergence corresponds to convergence in ρ. Details can

be found in section 6 of Billingsley (2009).

Proposition 6 (Social Identification via Social Learning). Suppose agent i observes

the other agents’ opinions in sequence. As n goes to infinity, observing n’s opinion has a

vanishing effect on i’s beliefs but a non-vanishing effect on i’s perceived similarity of n,

ρ
(
Πi(·|sn),Πi(·|sn−1)

)
→ 0 (11)

d
(
Qi,n(sn), Qi,n(sn−1)

)
→ w(si, sn) (12)

where w(si, sn) is not almost surely zero.

5 Extensions

Now that we have studied the basic workings of the model and identified the relationship

between dual learning and disagreement, let us expand the discussion and ask the model

what it has to say when other modifications and features are introduced. To summarize the

findings: (1) dual learning can enhance learning while disallowing optimal action convergence

in the observational learning environment, (2) agents can be more persuasive if they agree

with each other on auxiliary topics, (3) over-representing those with extreme views can result

in polarization when there would otherwise be none, and (4) we give a basic characterization

of news media’s consumer behavior.

5.1 Learning From Actions

Dual Learning delivers new insights to the observational learning literature. In the obser-

vational learning framework introduced by Bikhchandani, Hirshleifer and Welch (1992) and

Banerjee (1992), an individual chooses from a set of actions based on a private signal and

information obtained through observing the actions taken by those who have chosen before.

The principal finding has been the presence of information cascades whereby it becomes op-

timal for one (and hence all succeeding individuals) to follow the behavior of the individual

who has chosen before oneself without regard for one’s private information.

Let X be a finite set of actions, Θ a finite set of parameters, and x(θ∗i ) the optimal action

for an agent with parameter θ∗i . Agents choose their actions sequentially. When agent i
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selects an action, he does so using the information contained in his private signal si and the

actions of those who have selected before him. Further technical details are reserved for the

appendix. Our discussion requires the following definitions:

1. Learning is complete if agents asymptotically assign probability one to the true distri-

bution of parameters throughout the population π∗(θ).

2. A process exhibits optimal action convergence17 if

lim
n→∞

Pr
(
xn = x(θ∗n)

)
= 1. (13)

3. An information cascade occurs whenever some agent’s choice of action does not depend

on his private signal.

4. A confounding outcome occurs when the population’s limiting beliefs do not converge

to certainty on π∗(θ) nor to a belief at which an information cascade would occur.

It will also be useful to define the following properties of the private beliefs that were intro-

duced in 4.1. Letting pθ(si) = Pr(θ∗i = θ|si) be i’s private belief in θ, we say that the signal

structure has unbounded private beliefs if the support of pθ contains 1 for all θ and bounded

private beliefs if the support of pθ does not contain 1 for any θ.

When is the process guaranteed to produce complete learning and when is there optimal

action convergence? Smith and Sorensen (2000) study the case in which the population

seeks to learn a single parameter θ∗. They show that if private beliefs are unbounded then

either the process results in a confounding outcome or there is complete learning and actions

converge to optimality. In contrast, there is never complete learning and thus no optimal

action convergence when private beliefs are bounded. Acemoglu, Bimpikis and Ozdaglar

(2010) extend the analysis to the case when agents only observe a subset of the history

of actions. They find that with unbounded private beliefs and if agents’ observations are

sufficiently rich, then actions will converge in probability to the optimal action.

The introduction of unobserved heterogeneity has both a positive and a negative effect on

asymptotic outcomes. Firstly, unobserved heterogeneity completely disallows optimal action

convergence. To see why, observe that even if the population were to asymptotically learn the

true distribution of thetas amongst the population π∗(θ), each individual i’s private signal

17The literature often refers to almost sure convergence or convergence in probability to the optimal action
as asymptotic learning. See Acemoglu, Bimpikis and Ozdaglar (2010), Acemoglu et al. (2011), and Mossel,
Sly and Tamuz (2014).
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is insufficient for him to deduce his own parameter of interest θ∗i . For example, suppose

that after observing many agents’ purchasing decisions, the population learns that half of

the agents in the population enjoy consuming some product while the remaining half do not.

When the next agent is tasked with deciding whether or not to consume the product, he

cannot be certain as to which half of the population he belongs.

Secondly, unobserved heterogeneity can facilitate learning when homogeneity would preclude

it. In particular, when agents in the standard model have bounded private beliefs they

cannot asymptotically assign certainty to the true θ∗. The reason is that as the population

grows increasingly certain of the true θ∗, it will eventually be the case that an agent’s action

carries no information about his signal. In contrast with unobserved heterogeneity, when

the population grows increasingly certain of the true distribution of parameters π∗(θ), there

is always information about an agent’s signal in his action. This finding is demonstrated by

the example that follows in 5.1.1 adapted from Bikhchandani, Hirshleifer and Welch (1992).

Unobserved heterogeneity also facilitates learning when private beliefs are unbounded. When

agents in the standard model have unbounded beliefs, either complete learning or a con-

founding outcome will obtain. In our model, each agent’s action provides sufficiently rich

information to prohibit the possibility of a confounding outcome and complete learning will

always obtain.

5.1.1 Heterogeneity Facilitating Learning

Consider first the case which we know will result in an information cascade. A countable

population of agents sequentially decide whether to adopt or reject some behavior. There is

either a low or high value to adopting the behavior θ∗ ∈ {L,H} and the value to rejecting

it is 0. For simplicity, assume L = −1 and H = 1.

Each agent receives a privately observable signal si ∈ {L,H}, with Pr(si = θ∗|θ∗) = r > 1/2.

When agent n+1 is asked to choose between adopting or rejecting the behavior, he computes

his expected payoff using the information contained in his private signal as well as the actions

of those who have chosen before xn = (x1, x2, ..., xn), xj ∈ {adopt, reject}. The expected

payoff to adopting is 2Pr(θ∗ = H|sn+1,x
n)− 1. Thus n+ 1’s best response is to adopt just

in case Pr(θ∗ = H|sn+1,x
n) ≥ 1

2
. Using Bayes theorem, n+ 1 will select adopt if
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
r + Pr(θ∗ = H|xn) > 1 sn+1 = H

Pr(θ∗ = H|xn) > r sn+1 = L

(14)

The literature refers to Pr(θ∗ = H|xn) as the public belief—the likelihood each agent j > n

assigns to the parameter being H after observing the first n actions of the other agents, but

not his own private signal. Notice that the process will enter an information cascade if the

public belief exceeds r as n+ 1 will choose ‘adopt’ regardless of his private signal. Similarly,

a cascade ensues if the public belief falls below 1− r as n+ 1 will always choose ‘reject’.

Must the process eventually enter into a cascade? There is a simple argument for why in

fact it will eventually enter into a cascade with probability one. For a contradiction suppose

that with positive probability the process does not at any point enter a cascade. For this

to be true, the public belief could never have entered [0, 1 − r) ∪ (r, 1]. Being that the

process never enters a cascade, we can infer the precise signal of each actor. Doob (1949)

shows that observing an infinite sequence of IID draws will lead the public belief to almost

surely converge to certainty on the true state and will thus converge to 0 or 1. This implies

a contradiction as the almost sure convergence of the public belief will require it to have

entered into [0, 1− r) ∪ (r, 1] and thus a cascade with probability one.

Now suppose that we introduce heterogeneous types into the model and define z(xn) =

Pr(θ∗j = H|xn) for j > n to be the public belief. As before, extreme public beliefs z(xn) ∈
[0, 1−r)∪(r, 1] induce an information cascade. However, the process is no longer guaranteed

to end up in a cascade! Notice now that if the process remains out of a cascade, the public

belief will not converge to 0 or 1, but rather to the true proportion with θ∗i = H. In the

appendix, we show that whenever this proportion lies within (1 − r, r), there is positive

probability that the process never enters a cascade and complete learning will occur. The

following proposition formalizes the discussion.

Proposition 7. In a population with unobserved heterogeneity:

(a) Optimal action convergence does not occur.

(b) There is generically complete learning with unbounded beliefs.

(c) Complete learning outcomes robustly exist with bounded beliefs.
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5.2 Multiple Learning Problems

Up until now, we have maintained the assumption that agents form and share their opinions

about a single topic. Realistically, there are many related topics we wish to learn about. The

main lesson of this section is that the degree to which one can influence another’s opinion is

larger when they agree on auxiliary topics. Conversely, substantial disagreement on auxiliary

topics can mitigate one’s influence over another’s opinion. Suppose that agent 1 has dined at

many restaurants with agent 2 and they have shared largely the same quality of experiences

each time. When 1 receives word that 2 holds a differing opinion about some new restaurant,

he will be less swift in dismissing 2 as having distinct tastes. However, if 2 had a history of

holding differing opinions about restaurants, he would hardly have placed any weight on 2’s

opinion of the new restaurant even if it had agreed with his own.

We reconsider the continuous action and parameter space of section 4.2. Agent i’s payoff to

an action x∗i ∈ R takes of the form of quadratic loss from his parameter θ∗i as in (6). He has

previously engaged in L auxiliary learning problems, receiving private signals for parameters

θ`i ∈ Θ` for ` = 1, 2, ..., L. We assume that the type partition is constant between different

learning problems θ∗i = θ∗j and θ`j = θ`i for all `, though this could be weakened to positive

correlation. We want to show how the similarity in beliefs over the L auxiliary issues θ`i

affects the susceptibility of i to be influenced in his action x∗i = E[θ∗i |s]. Assuming two

agents, we can write 1’s perceived similarity as

Q(s) =

(
1 +

1− π̃
π̃
· f(s1)

f(s1|s2)
· R̄L

)−1

(15)

where R̄ =
(∏L

`=1
f(s1`)

f(s1`|s2`)

) 1
L is the geometric mean of the likelihood ratios f(s1`)

f(s1`|s2`)
. Recall

from section 4.1 that f(s1`|s2`) > f(s1`) implies that the likelihood of observing s1` from

a distribution from which we already obtained s2` exceeds the unconditional likelihood of

having drawn s1`. We can think of this geometric mean R̄ as capturing the degree to which

1 and 2 agree on the L auxiliary problems. When R̄ < 1 the agents tend to agree and

when R̄ > 1 the agents tend to disagree. Let “sufficient auxiliary agreement (disagreement)”

denote “R̄L sufficiently small (large)”.

5.2.1 Politics Example (Multiple Policies)

The example illustrating non-monotonicity in disagreement in section 4.2 demonstrated that

there was a necessary limit on the extent to which 2 could influence 1’s view on a particular
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L=1

L=5

L=2

L=10

Figure 5: Multiple Learning Problems

political policy. Now suppose the two agents continue their conversation and 1 discovers

that he shares much common ground with 2 on a large array of other political policies.

This discovery will open up 1’s belief about the original policy to being more susceptible to

influence by 2. Figure 5 illustrates the persuasive power of agreeing on auxiliary issues. In

each diagram, we fix s1 = 0.7 and vary s2 just as in figure 3. Between the diagrams we vary

the number of other issues L on which the agents agree, where we specify the agreement as

R̄ = 0.75.

There are a couple of different ways to express the idea that the degree to which 2 can

influence 1’s action is larger when they agree on auxiliary topics. Firstly, notice in figure

5 that by increasing L we expand the domain on which 1’s action moves positively with

2’s opinion. More generally, we can show that for every compact subset of the signal space

S ′ ⊂ S, there is sufficient auxiliary agreement such that 1’s action will move positively with

2’s opinion for all s1 and s2 in S ′.

Secondly, observe in figure 5 that increasing the auxiliary agreement raises the peaks and

lowers the troughs of the E[θ∗1|s] curve. Generally, if the shared opinion θ̂(s1, s2) is an

unbounded function of s2, then maxs2 E[θ∗1|s] can be made arbitrarily large and mins2 E[θ∗1|s]

arbitrarily small. Unbounded shared opinions can be found in the above example with

normally distributed signals and a setting in which 2’s signals consist of all vectors of finitely

many draws from fθ∗2 (s).
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Figure 6: Conditional Densities

Consider a modification to the above example so that instead the agents disagree on the

auxiliary topics R̄ > 1. This change would result in figure 5 showing the opposite qualitative

effect of increasing L. In particular, an increase in L lowers the variation of x∗1 in 2’s opinion

and thus the influence that 2 can have on 1’s beliefs.

Proposition 8.

(a) For every compact subset S ′ ⊂ S, there is sufficient auxiliary agreement such that 1’s

action x∗1 moves positively with a change in 2’s opinion θ̂(s2) for all signals in S ′.

(b) If the shared opinion is unbounded in s2, then 1’s action x∗1 can be made arbitrarily large

or small given sufficient auxiliary agreement.

(c) The distance between x∗1 and his own opinion θ̂(s1) will be arbitrarily small under suffi-

cient auxiliary disagreement.

5.3 (Perceived) Polarization

What happens if the media and social media skew their coverage in a way that over-represents

those with more extreme views and this distortion is not accounted for by the population?

We are going to look at an example of how dual learning can serve as a channel through

which this type of distortion can lead to polarization where there would otherwise be none.

First, let us see why this distortion cannot drive polarization in the homogeneous case.

Suppose all agents seek to learn θ∗ ∈ {L,M,R} (left, moderate, right) and are faced with a

set of actions xi ∈ {L,M,R} that yield a payoff of ui(xi) = 1(xi = θ∗). Each agent receives

si ∼ fθ∗ . The conditional densities are represented in figure 6, with fL(s) = 3
2
− s skewing

signals left, fM(s) = 1
2

+ 2s for s < 1
2

and 5
2
− 2s for s ≥ 1

2
giving moderate signals, and

fR(s) = 1
2

+ s skewing signals right.18

18These densities are used to simplify the exposition. That dual learning can serve as a conduit for
generating polarization does not depend on the form of densities.
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Each agent observes his own signal si and an infinite sequence of other agents’ opinions.

Consider the effect of a systematic distortion of the publicly observable opinions that over-

represents extreme opinions (opinions assigning near certainty to L and R). In this case, the

publicly observable opinions will outweigh each individual’s private signal and the population

will fully agree. Of course, the particular belief that the population settles on could be

affected by the distortion, but there would nonetheless be agreement.

Now introduce the ex ante possibility of unobserved heterogeneity. Suppose that in actual

fact θ∗i = M for each and every agent i. Then observing infinitely many undistorted opinions

will reveal this to be the case and the limiting behavior will be all agents selecting xi = M

regardless of their signal.

As before, suppose there is a systematic distortion that over-represents extreme opinions.

Then in the limit, the population might come to believe that there is true polarization.

Furthermore, this very belief will drive polarized behavior.

Let π̂ = (π̂L, π̂M , π̂R) be the limiting estimated distribution of thetas amongst the population.

The expected payoff from action x ∈ {L,M,R} for an agent with signal si is

U(x; si, π̂) = Pr(θ∗i = x|si, π̂) =
fx(si)π̂x

fL(si)π̂L + fM(si)π̂M + fR(si)π̂R
. (16)

By inspection of (16), an agent’s optimal action is the one maximizing the product fx(si)π̂x.

Figure 7 demonstrates that leading the population to believe that there are in fact fewer

moderates (lowering π̂M) and more of the extremes (raising π̂L and π̂R) will lead the pop-

ulation to increasingly segment between agents choosing xi = L and xi = R. The top left

sub-figure shows the undistorted case in which all agents optimally select xi = M . With the

small amount of distortion in the top right sub-figure, those on fringe with the most extreme

signals are induced into choosing L or R. The bottom left shows the increase in distortion

increases the proportion of the population choosing L or R. Finally, in the bottom right

sub-figure, the distortion is sufficient to induce agents with any signal to choose L or R.

5.4 Application: News Media

How do individuals choose between news sources from which to acquire information? Gentzkow,

Shapiro and Stone (2016) review the literature related to this topic. Mullainathan and

Shleifer (2005) model consumers with a preference for reading news that confirms their own

biases. We show that, with unobserved heterogeneity, consumers will rationally choose to
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Figure 7: (Perceived) Polarization. The diagrams show that an increase in the perceived
polarization π̂ can drive polarized actions.

.

acquire news from sources that tend to confirm their own views—without an explicit con-

firmation bias. We also fill a gap in this literature by demonstrating that the media can

facilitate public disagreement even when the public is aware of the disagreement.

5.4.1 Media Consumer Choice

Agents are engaged in a sequence of learning problems. In period ` = 1, 2, ... agent i selects

action x`i ∈ R and receives payoff

ui(x
`
i ; θ

`
i ) = −αi(x`i − θ`i )2 (17)

where θ`i ∈ R and αi measures i’s idiosyncratic preference for holding accurate beliefs. Before

selecting an action, i can choose to acquire a signal s`i ∼ fθ`i at a cost ci > 0 and choose

whether to observe the opinion θ̂(s`M) of media firm M at opportunity cost d. We are

interested in the case when acquiring direct information about an issue requires more effort

than the time it takes to observe the media’s report and hence we assume ci > d. We also

assume fθ to be a normal density with mean θ and precision τ .
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For the moment, suppose that there is a single media firm and consider the decisions faced

by i in a given period `. After acquiring the information that he wishes to obtain, his optimal

action will be to select x`i(·) = E[θ`i |·] yielding an expected payoff of −αiVar[θ`i |·].

When choosing the information to acquire, i must take into account both the benefits to the

current period as well as the potential benefits to future periods. Assume i discounts the

future at the rate 0 < βi < 1.

Proposition 9 (Media Consumer Choice). A consumer’s optimal choice in period ` de-

pends on αi and Q`−1
iM as characterized by figure 8. Asymptotically, each α-type will select

from either their left-most or right-most column.

Figure 8 charts out the optimal choice for i with cost ci and discount rate βi for different

sensitivities to accuracy αi and perceived similarity Q`−1
iM (written more clearly as Q). The

symbol ∅ represents obtaining no signals, si obtaining i’s own signal, sM viewing the media’s

opinion, and si, sM obtaining i’s own and also view the media’s opinion. In the “Experiment”

region, a consumer will be willing to view both s`i and θ̂(s`M) for a period payoff that is lower

than observing either only si or no signals ∅. The term “experiment” is drawn from the

literature studying bandit processes. In the language of Gittins (1979), the consumers’

decision problem is a bandit superprocess.

Figure 8: Optimal Choice. The diagram gives i’s optimal information acquisition for various
sensitivities to accuracy αi and perceived similarity Q. Row 2© vanishes if ci is too small
and there is no experimentation if d is too large.

Consider first αi in a neighborhood of zero (row 1© of figure 8). Such an agent would
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never deem the value high enough to purchase any information regardless of the perceived

similarity. In row 2©, which vanishes if the cost ci is too small, the consumer is never willing

to obtain his own signal and will only observe the media’s opinion with a high enough

perceived similarity.

Next, consider the other extreme of an agent with a very large αi at level 5© who is quite

intent on forming accurate beliefs. This agent would always find a benefit in obtaining s`i

and, so long as Q is not close to zero, will also view the media’s opinion.

The behavior of agents with intermediate sensitivities to accuracy αi is interesting. At 3©,

so long as the cost of observing the media’s opinion d is not too large, there is a range

of Q for which i will obtain a signal and observe that of the media for the sole purpose

of experimentation. If the perceived similarity falls too low, the experimentation stops

altogether and no information observed. Once Q is sufficiently high, the experimentation

stops and the agent depends on the media’s report.

At 3©, middle values of the perceived similarity also involve experimentation if. If the per-

ceived similarity falls too low, i will give up on the media and only trust his own information.

As with 2©, if Q becomes high, i will stop obtaining his own signal and depend only on that

of the media.

Asymptotically, all αi will at some point choose from either their respective rightmost or

leftmost columns in figure 8. All types could learn to permanently ignore the media firm at

some point when it has a track record of disagreeing too much with them. For αi types 2©
through 4©, they could find themselves in a situation where they choose to forever trust the

information of this media firm.

5.4.2 Further Observations

We could conduct the same consumer analysis for the case with multiple media firms. This

would show that some agents consume no media and others attend to media sources that do

not have too low a perceived similarity. For those intermediate αi types who rely on media

without obtaining their own signals, there is a higher expected payoff when the consumed

media sources tend to agree with each other than if they are discordant.

There are a couple more observations to make. For clarity, assume that there are two media

firms A and B and the cost for a consumer to observe either of the firm’s opinions is zero.

The first observation is that a small amount of information can result in vast disagreement
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among the population. An extreme example of this is found by supposing that the population

has grown divided over the course of many periods with half the population assigning a

perceived similarity of nearly one to firm A and zero to firm B and the remaining half

assigning the reverse beliefs. Suppose further that no agent finds it optimal to pay ci to

purchase his own signal. Then the population will be sharply divided whenever the media

firm’s reports are distant from each other. This would be like Fox News and MSNBC

presenting distinct opinions about some issue and viewers adopting the opinion of the news

source that they have agreed with most in the past.

This example also illustrates the second observation that public disagreement facilitated by

the media does not dissipate with public awareness of the disagreement. In existing models

where diverging opinions are driven by media bias, it is important that the agents in the

model are themselves unaware of this divergence. Otherwise, agents will simply condition

on the opinion divergence and the media’s effect vanishes. In our model, agents can grow

to trust certain media sources more than others. In fact, learning that other media sources

collide with one’s trusted source is evidence against believing these other sources. Pub-

lic disagreement is not crushed by observing the disagreement. Rather, observing public

disagreement today lays the groundwork for even stronger disagreement tomorrow.

6 Conclusion

One of the unexpectedly useful insights gained from Harsanyi’s mutual consistency assump-

tion and Aumann’s theorem is that we must look to differences between individuals beyond

mere differences in their private information to understand the disagreement we observe in

the world. This paper studies the emergence and patterns in disagreement when people take

into account the unobservable differences between themselves when forming their beliefs.

This more complex form of social learning, what we refer to as dual learning, captures many

phenomena that do not fit existing models.

Disagreement is an important issue to understand. The opinions of a populace culminate in

voting behavior that drives political decisions. The views of those tasked with determining

research funding influence the very trajectory of science. It is our hope that this discussion

and analysis will provide guidance for future empirical and theoretical work in uncovering

the underlying differences that drive public disagreement.
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A Mathematical Appendix

The precise statements of many of the theorems referenced in the following proofs can be

found in the online appendix: http://colerandallwilliams.com/wp-content/uploads/

2017/08/Echo_Chambers_Resources.pdf.

Proof of Proposition 1. Let Rk ≡ fL
fH

(sk) be the likelihood ratio for drawing signal sk. The

assumption p(si) < πH < p(sj) implies Ri > 1 > Rj. Expanding (4)

Q(s) =

[
1 +

π2
H +RjπHπL +RiπHπL +RiRjπ

2
L

πH +RiRjπL
· 1− π̃

π̃

]−1

we find Q to be differentiable in Ri and Rj. Upon differentiating, we find dQ
dRi

< 0 whenever

Rj < 1 and dQ
dRj

> 0 for Ri > 1. Hence, Q is reduced by any increase in Ri or decrease in

Rj, which corresponds to a decrease in p(si) or increase in p(si). Letting R−1
i and Rj go to

0 sends Q to zero. From (3), Q(s)→ 0 implies P (s)− p(s1) = [p(s1, s2)− p(s1)]Q(s)→ 0.
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The mechanism of proposition 1 can be found in more general environments. The private

beliefs p(si) of the two parameter environment provided an intuitive conceptualization of

agreement and disagreement between 1 and 2. As we generalize, we now associate the

agreement between 1 and 2 directly with the likelihood ratio f(s1)
f(s1|s2)

: lower values imply a

higher degree of agreement. For measurable A ⊂ Θ we can write

Π1(A|s) = Π′(A|s)Q(s) + Π′(A|s1)
(
1−Q(s)

)
(18)

where Π′(·|s) is a probability measure that assumes all signals in the vector s come from

agents of the same type. Let ‖ · ‖ denote the total variation metric between two probability

measures, ‖µ−λ‖ ≡ 2 supB |µ(B)−λ(B)| where the supremum is taken over measurable B.

Proposition 10. Consider a change in s1 and/or s2.

(a) If f(s1)
f(s1|s2)

→ +∞ then ‖Πi(·|s)− Π′(·|s1)‖ → 0.

(b) If f(s1)
f(s1|s2)

→ 0 then ‖Πi(·|s)− Π′(·|s)‖ → 0.

Proof.(a) For any A ∈ B(Θ)

|Π1(A|s)− Π′(A|si)| = |Π′(A|s)− Π′(A|si)| ·Q(s) ≤ Q(s) (19)

and hence 2 supA∈B(Θ) |Π1(A|s)− Π′(A|si)| ≤ 2 ·Q(s). It follows that f(s1)
f(s1|s2)

→ +∞ implies

Q(s)→ 0 and thus ‖Πi(·|s)−Π′(·|s1)‖ → 0. Part (b) can be proved in a similar fashion.

Proof of Proposition 3. Consider a shift in s2 to s′2 and define s = (s1, s2) and s′ = (s1, s
′
2).

By definition 2, 1− ε ≡ 1 + Q(s′)−Q(s)
Q(s′)+Q(s)

/
∆(s′)−∆(s)
∆(s′)+∆(s)

which rearranges to (1− ε) ·
(
∆(s′)−∆(s)

)
·(

Q(s′) + Q(s)
)

= 2
(
E[θ∗i |s′] − E[θ∗i |s]

)
. By the regularity assumption sgn

(
∆(s′) −∆(s)

)
=

sgn
(
θ̂(s′2)− θ̂(s2)

)
and thus

sgn(1− ε) · sgn
(
θ̂(s′2)− θ̂(s2)

)
= sgn

(
E[θ∗i |s′]− E[θ∗i |s]

)
(20)

where sgn(·) is the well-known signum function defined for any real number as x = sgn(x)·|x|.

Proof of Proposition 4. (a) Consider first the homogeneous case. If some agent j is certain

that Pr(x(θ∗) = x|sj) = 1 then i too obtains this certainty and no opinions to the contrary

will reduce it: Pr(x(θ∗) = x|sj, s) = 1 for any s that is not perfectly revealing. (b) As

payoffs are finite, if i assigns a high enough probability to the event x(θ∗i ) = y, he will indeed
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choose x∗i = y. Let ρ denote the probability with which nature assigns an agent to a type

with parameter θy which is itself defined as the parameter at which x(θy) = y. Let the

probability with which nature assigns an agent to a type with parameter θ 6= θy be denoted

by ηθ(1− ρ) and η be the vector of length |Θ| − 1 containing all such ηθ. Agent i’s posterior

can be written

Pr(x(θ∗i ) = y|s) =

∫
D
Pr(x(θ∗i ) = y|si, ρ,η)dµ(ρ,η|s−i) (21)

where µ(·|s−i) is the posterior probability measure over (ρ,η) given the signals of the agents

other than i and D is the |Θ|-dimensional simplex. Expanding the integrand of (21)

Pr(x(θ∗i ) = y|si, ρ,η) =
fθy(si)ρ

fθy(si)ρ+ (1− ρ)
∑

θ 6=θy fθ(si)ηθ
(22)

we see that there exists a cutoff such that, if Pr(ρ > k∗|s−i) > 1−ε, then i will select x∗i = y.

By the Lebesgue Decomposition Theorem, we can decompose µ = µ1 + µ2 such that µ1 is

absolutely continuous with respect to the (|Θ|-dimensional) Lebesgue measure µ1 << λ and

µ2 is singular with respect to the Lebesgue measure µ2 ⊥ λ. Let v ≡ dµ1
dλ

be the Radon-

Nikodym Derivative of µ1 with respect to λ. Let ρ < ρ′ < 1, sj the signals of the nx agents

certain that x(θ∗j ) = x, and sk the remaining ny signals, and write

v(ρ,η|sj, sk)
v(ρ′,η|sj, sk)

=
f(sk|ρ,η)

f(sk|ρ′,η)
· v(ρ,η|sj)
v(ρ′,η|sj)

(23)

The density v(ρ,η|sj) is almost surely positive. Let us now write the ratio of likelihoods

f(sk|ρ,η)

f(sk|ρ′,η)
=

∏
s∈sk

(
fθy(sk)ρ+ (1− ρ)

∑
θ 6=θy fθ(sk)ηθ

)∏
s∈sk

(
fθy(sk)ρ′ + (1− ρ′)

∑
θ 6=θy fθ(sk)ηθ

) (24)

By assumption, fθy (sk)
fθ(sk)

> b > 1 for all k some such b. With some algebra it can be shown

that (24) is less than (
ρb+ 1− ρ
ρ′b+ 1− ρ′

)ny
(25)

which goes to zero as ny → +∞. It follows that v(ρ,η|s−i) goes to zero as ny → +∞.

Similarly, we could show that the posterior probability on any atoms goes to zero as ny →
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+∞. We can thus write

Pr(ρ < k∗) =

∫
D|ρ<k∗

v(ρ,η|s−i)dλ(ρ,η). (26)

As the integrand of (26) is bounded and converges pointwise to 0, the Bounded Convergence

Theorem provides that Pr(ρ < k∗) likewise converges to 0 as ny →∞.

Remark. If the population were homogeneous T = 1, then Doob’s Consistency Theorem

(Doob, 1949) tells us that if i observes an infinite sequence of signals, with prior probability

one the posterior will be consistent at the true parameter. One condition of Doob’s Theorem

is that the family of distributions is one-to-one. This assumption is not satisfied for the case

of T component mixture models with component weights γt and parameterized distributions

Fθt , t = 1, 2, ..., T . This is indeed the setting in which we are working.

In the following, we carefully define a function h : Ω→ Ω that generates an equivalence class

of ω’s, in that gω(s) = gω̃(s) a.e. implies that h(ω) = h(ω̃). The family gω′ defined on the

image ω′ ∈ Ω′ ≡ h(Ω) is one-to-one and hence we can apply Doob’s Theorem.

By the Borel Isormorphism Theorem, there exists a Borel isormphism z between Θ and a

subset of the interval [0, 1] with the same cardinality as Θ. Without loss of generality assume

z−1(0) ∈ Θ. Define the linear order on Θ to satisfy θ ≤ θ′ iff z(θ) ≤ z(θ′).

Definition. Let h : Ω → Ω with h(ω) = ω′ = (θ1′ , θ2′ , ..., θT
′
, γ1′ , γ2′ , ..., γT ′) be defined by

the following:

1. Combine duplicate θ’s. Starting from left to right in ω, replace any of θt+k = θt for

some k > 0 with z−1(0) and add γt+k to γt while also replacing γt+k with 0.

2. Permute the indices so that the θ’s are in ascending order. If there is θt = z−1(0) with

γt > 0 for some t, place it to the right (a higher index) to all the θτ = z−1(0) with

γτ = 0.

Lemma 11.
1. h(ω) is Borel Measurable.

2. Ω′ ≡ h(Ω) is a Borel subset of the complete separable metric space Ω.

Proof. (1) First decompose the domain Ω =
⋃
Bm whereby on each of the Bm the order

of the θt does not change and if θt = θt
′

or γt = 0 for some ω ∈ Bm, then it does so for all

ω′ ∈ Bm. Define the function y(ω) ≡
(
z(θ1), z(θ2), ..., z(θT ), ..., γ1, γ2, ...γT

)
. It can be shown
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that each y(Bm) is a Borel subset of [0, 1]2T and as y is Borel measurable Bm ∈ BΩ.

By design, h(ω) is continuous on each Bm and the image of these subsets hm ≡ h(Bm) can

be shown to be Borel. Take any A ⊂ h(Ω) such that A ∈ BΩ and write A =
⋃
Am where

Am ≡ A ∩ hm. We can write,

h−1(A) =
⋃

(Bm ∩ h−1(A)) =
⋃

(Bm ∩ h−1(Am)). (27)

As h is continuous on each Bm, we know h−1(Am) is contained in each sub-sigma algebra

BBm and is thus also contained in BΩ. It follows that h−1(A) ∈ BΩ.

(2) Follows immediately from h(Ω) =
⋃
hm and the fact that each hm is Borel.

Using Lemma 11, we can extend Doob’s consistency theorem to the case of finite mixture

models. The statement of the theorem writes “consistency*” to emphasize the use of a

qualified notion of consistency. Consistency of the posterior at a point ω0 entails that it will

almost surely asymptotically assign probability 1 to every neighborhood of that point. For

mixture models, consistency* of the posterior at a point ω0 entails that the posterior will

almost surely assign probability 1 to every neighborhood of the set of points equivalent to

ω0. Here ω and ω′ are equivalent if they assign the same weight to each θ,
∑T

t=1 γt1(θt =

θ) =
∑T

t=1 γ
′
t1(θ′t = θ).

Theorem 12 (Doob’s Theorem for Finite Mixture Models.). Suppose that Θ and S

are complete separable metric spaces endowed with their respective Borel sigma algebras with

gω(s), ω ∈ ΘT × ∆T comprising an identified finite mixture family. Let Π be a prior and

{Π(·|sn)} a posterior. Then there exists Ω0 ⊂ Ω with Π(Ω0) = 1 such that {Π(·|sn)}n≥1 is

consistent* at every ω ∈ Ω0.

Theorem 12 is proved en route to the proof of proposition 5. Without loss of generality, the

proof proceeds with i conditioning directly on the signals of agent −i. We could replace the

sj with j’s opinion θ̂j = θ̂(sj) and the proof would otherwise be unchanged.

Proof of Proposition 5. By lemma (11.1) h(ω) is Borel measurable so we can induce a measure

λ on Ω′ defined as λ(A|sn) ≡ Π̃(h−1(A)|sn) where is Π̃(·|sn) is the public belief over ω ∈ Ω

conditional on the vector sn, Π̃(B|sn) ≡ Pr(ω ∈ B|sn) for B ∈ BΩ.

First write

Πi(A|sn) =

∫
Ω′
Pr(θ∗i ∈ A|sn, ω′)dλ(ω′|sn) =

∫
Ω′

∑
t

fθt(si)γt∑
t′ fθt′ (si)γ

′
t

1(θt ∈ A)dλ(ω′|sn). (28)
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Claim 1: λ(·|sn)⇒ δh(ω∗)(·)

The family gω′(s) is one-to-one on Ω′ which by lemma (11.2) is a Borel subset of a complete

separable metric space. Hence by Doob’s Theorem (Doob, 1949) as stated in Ghosh and

Ramamoorthi (2003), λ(·|sn) is almost surely consistent and by the Portmanteau Theorem

paired with the fact that Ω′ is a separable metric space, λ(·|sn) converges weakly to δh(ω∗)(·).
Theorem 12 follows immediately by noting that if λ assigns probability 1 to every neigh-

borhood of h(ω∗), then Π̃ assigns probability 1 to every open set containing ω such that

h(ω) = h(ω∗).

The Portmanteu Theorem, equation (28), and claim 1 imply that whenever
∑

t
fθt (si)γt∑
t′ fθt′ (si)γ

′
t
1(θt ∈

A) is almost surely continuous with respect to δh(ω∗)(·),

Πi(A|sn)→
∫

Ω′

∑
t

fθt(si)γt∑
t′ fθt′ (si)γ

′
t

1(θt ∈ A)dδh(ω∗)(ω). (29)

Claim 2: For all A with Πi(∂A|si, π∗) = 0,
∑

t
fθt (si)γt∑
t′ fθt′ (si)γ

′
t
1(θt ∈ A) is almost surely contin-

uous with respect to δh(ω∗)(·).

The function
∑

t
fθt (si)γt∑
t′ fθt′ (si)γ

′
t
1(θt ∈ A) is only discontinuous when some θt crosses the bound-

ary of A, and is thus almost surely continuous with respect to δh(ω∗)(·) just in case δh(ω∗)

(
D
)

=

0 where D ⊂ Ω′ is defined as the subset on which θt ∈ ∂A for some θt ∈ ω ∈ D. A set A

satisfies this condition if and only if Πi(∂A|si, π∗) = 0 implying that such an A is a continuity

set with respect to Πi(·|si, π∗). As (29) holds for all continuity sets A, it follows by a final

application of the Portmanteu Theorem that Πi(·|sn) weakly converges to Πi(·|si, π∗).

Proof of Corollary 5. Section 6 in Billingsley (2009) shows that weak convergence corresponds

to convergence in ρ, hence (11) follows from proposition 5 and the triangle inequality. As

Qin(sn)−Qin(sn−1) =

∫
Ω′

(
Qin(sn|ω′)−Qin(sn−1|ω′)

)
dλ(ω′|sn) (30)

has a continuous integrand in ω′, the difference converges to w(si, sn) ≡ Qin(sn|h(ω∗)) −
Qin(sn−1|h(ω∗)). The second term in this difference is constant in sn and Qin(sn|h(ω∗)) is

not almost surely constant in sn.
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B Mathematical Appendix

Our discussion is made commensurate with the observational learning literature by assuming

Θ to be finite, distinct θ and θ′ prescribe different optimal choices from a finite set of actions

X, and the vector of assignment probabilities γ to be known. Assume that each action is

played for some open set of beliefs.

Proof of Proposition 7.

(a) Under heterogeneity, there is θ∗i , θ
∗
j ∈ supp(π∗) with x(θ∗i ) 6= x(θ∗j ). Optimal action

convergence implies that with probability one such an agent i receives signal si such that

they choose xi = x(θ∗i ). Mutual absolute continuity of the signaling distributions would also

imply j receives sj inducing xj = x(θ∗i ) with probability one. Hence, there is no optimal

action convergence.

(b) This proof draws strongly from Smith and Sorensen (2000) (S&S). In this environment,

nature chooses between only finitely many parameter vectors θ = (θ1, θ2, ..., θT ) and hence

only finitely many population distributions of thetas. Denote by π̃(θ) =
∑T

t=1 γt1(θt = θ) a

generic distribution of thetas and π∗ the true distribution as chosen by nature. The likelihood

ratios `π̃(xn) = Pr(π̃|xn)
Pr(π∗|xn)

for π̃ 6= π∗ and xn = (x1, x2, ..., xn) the first n actions chosen form

a Martingale conditional on π∗. Define ψ(x|π̃, `) to be the ex ante probability of an agent

performing action x conditional on π̃ being the true distribution of parameters and ` being

their prior vector of likelihood ratios `π̃.

By the Martingale Convergence Theorem, there exists a real, nonnegative stochastic variable

`∞π̃ such that `π̃(xn) → `∞π̃ almost surely. This implies that asymptotically for all π̃ and all

actions x played with positive probability

`∞π̃ =
ψ(x|π̃, `∞)

ψ(x|π∗, `∞)
`∞π̃ (31)

If only one action is taken with positive probability at `∞, then because private beliefs are

unbounded, the public belief must assign certainty to the population being homogeneous.

As the likelihood ratios almost surely will not converge to certainty on the false π̃, then the

population truly is homogeneous π∗ and complete learning has occurred.

Consider the case where two actions x and x′ are active in the limit. This would imply that

at `∞ agents assign positive prior probability to exactly two parameters θ and θ′. If only

one parameter θ were assigned positive probability only the action x(θ) would be active. If
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more than two parameters were assigned positive probability, then unbounded private beliefs

would entail that more than two actions would be active. For equation (31) to be satisfied,

either `∞π̃ = 0 or ψ(x|π̃, `∞) = ψ(x|π∗, `∞) and we shall proceed to show that the latter

equality cannot hold for π̃ 6= π∗.

For a given `, i’s best response will be x just in case her private belief pθ(si) exceeds some

threshold K(`). Define F̃θ(pθ) and F̃θ′(pθ) to be the conditional distributions of the perceived

similarity pθ. The ex ante probability that i chooses x for a given π̃ is

ψ(x|π̃, `∞) = π̃(θ)
(
1− F̃θ(K(`))

)
+ π̃(θ′)

(
1− F̃θ′(K(`))

)
. (32)

From lemma A.1 in S&S Fθ(pθ) > Fθ′(pθ) whenever both are not zero or one. Thus for

distinct π̃ and π∗, almost surely ψ(x|π̃, `∞) 6= ψ(x|π∗, `∞). It follows that `∞π̃ = 0 and

complete learning has occurred.

Generically, more than two actions cannot be active at `∞. To see this, let J be the number

of π̃ 6= π∗ with `∞π̃ > 0 and M the number of actions active at `∞. Because of the identity∑
x∈X ψ(x|π̃, `∞) = 1, if the equality ψ(x|π̃, `∞) = ψ(x|π∗, `∞) holds for M − 1 of the active

actions, it must also hold for the remaining active action. Hence satisfying equation (31) for

all π̃ and active actions generates a system of J(M − 1) equations in J unknowns `∞π̃ . nown

1. As the equations generically differ, they can only be solved when M = 2.

(c) Assume π∗(H) ∈ (1− r, r). The idea is to first isolate a positive measure of trajectories

that after Mε steps will never leave a small radius around π∗(H). Then we show that, of

these trajectories, a positive proportion will have never left (1− r, r) in the first Mε steps.

Let z(sn) = Pr(θ∗j = H|sn) for j > n be a variant of the public belief z(xn) defined in

5.1.1. Prior to a cascade z(sn) = z(xn). As per theorem 12, z(sn)→ π∗(H) almost surely as

n→ +∞. Let Z be the set of the trajectories of the public belief with Borel sigma algebra

BZ and probability measure µ induced from the signaling distribution Gω∗ . Define Z ′ ⊂ Z

to be the subset of trajectories such that zm ∈ (1 − r, r) and at all points in the sequence.

We want to show that µ(Z ′) > 0.

Let δ ≡ 1
2

min(|r − π∗(H)|, |π∗(H) + 1 − r|). For almost all trajectories, there exists an

M < +∞ such that, for all m > M , |zm − π∗(H)| < δ. Let Mε be the smallest integer such

that µ(Zε) > ε where Zε = {z ∈ Z : ∀m ≥Mε, |zm − π∗(H)| < δ}.

As each trajectory has only received finitely many signals there are only finitely many unique

of signal frequencies observed in the first Mε steps of each trajectory. Partition Zε =
⋃
Z l
ε
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where each Z l
ε comprises of trajectories which received the same signal frequencies in the

first Mε steps. The positive measure for Zε requires that at least one member of its partition

has positive measure and thus suppose µ(Z l
ε) = ε1 > 0. Denote by k the number of H signals

in the first Mε steps for trajectories in Z l
ε.

Every permutation of k “H” signals and Mε−k “L” signals has the same positive probability

denoted by ε2 > 0. Thus we can find a subset of trajectories Ẑ l
ε ⊂ Z l

ε that never leave (1−r, r)
defined by the permutation in which the first 2 ∗ min{k,Mε − k} steps form an oscillating

sequence of L,H,L,H, ... and then including whatever signals remain at the end. At no

point during the oscillation does z ∈ Ẑ l
ε leave (1− r, r) and if it leaves after then necessarily

it’s Mεth entry zMε would too, contradicting Ẑ l
ε ⊂ Zε. It follows that µ(Ẑ l

ε) = ε1ε2 > 0.

Notice that Ẑ l
ε ⊂ Z ′ as all z ∈ Ẑ l

ε never leave (1− r, r).

Thus we know µ(Z ′) ≥ µ(Ẑ l
ε) ≥ ε1ε2 > 0

In the low probability event of avoiding an information cascade each agent follows the action

dictated by his private signal. In the limit, the proportion choosing the correct action is r.

Proof of Proposition 8. (a) By proposition 3, it will be enough to show that for every compact

S ′ ⊂ S, R̄L can be made sufficiently small so that 1’s perceived similarity is relatively

inelastic ε < 1 for all signals in S ′. Because S ′ is compact and the conditional densities fθ(s)

continuous in s, both Q(s′)−Q(s)
Q(s′)+Q(s)

and maxs1,s2,s′2∈S′
Q(s′)−Q(s)
Q(s′)+Q(s)

are well defined on S ′. It can be

shown that for any given signals, Q(s′)−Q(s)
Q(s′)+Q(s)

goes to zero as R̄L goes to zero. It follows that

maxs1,s2,s′2∈S′
Q(s′)−Q(s)
Q(s′)+Q(s)

also goes to zero as R̄L goes to zero. From definition 2, it follows that

for R̄L sufficiently small, ε < 1 on S ′.

(b) We will show that for sufficient auxiliary agreement E[θ∗1|s] can be made larger than any

M < +∞. Having assumed the shared estimate to be an unbounded function of s2, we can

find an s2 such that θ̂(s1, s2) > M for any M and s1. From

E[θ∗1|s]− θ̂(s1, s2) =
(
1−Q(s)

)(
θ̂(s1)− θ̂(s)

)
(33)

and equation 15, E[θ∗1|s] − θ̂(s1, s2) → 0 as R̄L → 0, completing the proof. The proof that

E[θ∗1|s] can be made smaller than any m > −∞ and for part (c) follow by similar arguments.
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C Mathematical Appendix

Blackwell (1965) has shown that with a fixed and finite set of choices in each period, there is

a deterministic stationary Markov policy for which, for any initial state, the total expected

reward is the supremum of the total expected rewards for the class of all policies. The

optimal policy satisfies the functional equation

V (Q) = max
ŝ∈Ŝ

U(ŝ;Q) + βE
[
V (Q′)|ŝ, Q

]
(34)

with Ŝ = {∅, ŝi, ŝM , (ŝi, ŝM)} the set of signal combinations the consumer can choose to

observe. Define A(Q), B(Q), C, and D to be the expected period payoffs to observing

(si, sM), sM , si, and ∅ (no signals) respectively for Q`
im = Q and a given αi. Let Ā ≡ A(1)

and B̄ ≡ B(1).

Lemma 13.
1. The expected period payoff from observing s`M is increasing in Q.

2. The value function V (Q) is non-decreasing in Q. If at Q, there is positive probability

of ever observing s`M , then V (Q) is increasing in Q.

3. There are diminishing expected period returns to information at Q = 1.

4. A(Q) and B(Q) are continuous in Q.

5. For a given ci and βi, we can partition the domain for αi ∈ R+ = [0, b0] ∪ (a1, b1] ∪
(a2, b2] ∪ (a3,+∞) where am < am′ and bm < bm′ whenever m < m′. The following

inequalities hold for the various αi-types.



B̄ − d ≤ D, C − ci < D, Ā− ci − d < D, αi ∈ [0, b0]

B̄ − d > D, C − ci ≤ D, Ā− ci − d < D, αi ∈ (a1, b1]

B̄ − d > D, C − ci > D, Ā− ci − d ≤ D, αi ∈ (a2, b2]

B̄ − d > D, C − ci > D, Ā− ci − d > D, αi ∈ (a3,+∞)

Proof of Lemma 13.1. The proof follows the same form as the proof for 13.2.

Proof of Lemma 13.2. Expand the value function

V (Q) = Q V 1(Q) + (1−Q) V 2(Q) (35)
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with V 1(Q) to be value at Q if in fact i and M are of the same type and V 2(Q) if i and

M are of different types. Let Ṽ (Q) to be the value function if we remove the option of the

agent observing s`M . We want to show

V 1(Q) ≥ Ṽ (Q) ≥ V 2(Q) (36)

with the last inequality holding strictly whenever the optimal policy assigns positive proba-

bility to the consumer ever observing s`M .

The second inequality in (36) comes from the fact that Ṽ (Q) follows the policy that maxi-

mizes the flow of utility when observing s`M is not an option. If i and M are not of the

same type, then they can do not better than by following the policy of Ṽ (Q), hence,

Ṽ (Q) ≥ V 2(Q). If the consumer ever observes s`M , then they both pay the cost d and

also receive information that will almost surely lead them to choose a suboptimal action. In

this case, Ṽ (Q) > V 2(Q).

To demonstrate that the first inequality in (36) holds, assume for a contradiction that it does

not hold V 1(Q) < Ṽ (Q). From what was previously shown, this would imply V (Q) < Ṽ (Q).

This implies a contradiction as the policy for V could be modified to never acquire s`M
guaranteeing V (Q) = Ṽ (Q).

Finally, it follows from the inequalities in (36) that if Q′ > Q

V (Q′) ≥ Q′V 1(Q) + (1−Q′)V 2(Q) ≥ V (Q) (37)

with the last inequality holding strictly if there is a positive probability of the consumer ever

observing s`M .

Proof of Lemma 13.3. This is where the assumed normal-normal conjugate environment

comes into play. Recall that a consumer’s expected payoff to ŝ (ignoring the costs) is

−αiV ar(θ∗i |ŝ). Without loss of generality, set αi = 1.

We want to show Ā− B̄ < C −D. The payoff to ŝi with precision τ is −(τ + τ0)−1 and the

payoff to not observing si is −τ−1
0 . The effect of observing sj is to increase τ0. The desired

inequality is obtained by differentiating

d

dτ0

[
− (τ + τ0)−1 + τ−1

0

]
= (τ + τ0)−2 − τ−2

0 (38)
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which is less than zero whenever τ > 0.

Proof of Lemma 13.4. As A(Q) and B(Q) give the maximized values for objective functions

that are differentiable in x and continuous in Q ∈ [0, 1], the Theorem of the Maximum implies

that A(Q) and B(Q) are continuous in Q.

Proof of Lemma 13.5. αi ∈ [0, b0]. All inequalities hold strictly at αi = 0. Both sides of each

inequality decrease linearly in αi, with the right side decreasing at a faster rate. Hence, there

exists a unique αi at which point the each inequality becomes an equality. That B̄ − d = D

implies C − ci < D follows from B̄ = C and d < ci. That B̄− d = D implies Ā− ci− d < D

follows from part 3 of the lemma and some algebra.

αi ∈ (a1, b1]. That C − ci = D implies Ā − ci − d < D follows again from part 3 of the

lemma.

Proof of Proposition 9. For αi ∈ [0, b0], any policy that acquires a signal yields an expected

payoff that is less than (strictly so if Q0 < 1) the one that does not select any in each period.

For αi ∈ (a3,+∞), the inequalities in Lemma 13 entail that no policy that ever selects ∅ or

ŝm is optimal. Hence, we can consider only plans that select ŝi or (ŝi, ŝM) in each period.

Stationarity of the optimal policy implies V (Q| if ŝi is chosen) = C−ci
1+βi

and is constant in Q.

V (0| if ŝi is chosen) > V (0| if (ŝiŝM) is chosen), V (1| if ŝi is chosen) < V (1| if (ŝiŝM) is chosen),

and by Lemma 13.2, V (Q| if (ŝiŝM) is chosen) is increasing in Q. Hence, there exists a Q̄

such that ŝi is the optimal control for Q ≤ Q̄ and (ŝi, ŝM) the optimal control for Q ≥ Q̄.

For αi ∈ (a1, b1), no policy that ever selects only ŝi in a period is optimal. We can thus

restrict our attention to policies that only ever select from {∅, ŝM , (ŝi, ŝM)}. As before, there

exists cutoff Q̄ such that ∅ is optimal at Q ≤ Q̄ and either ŝM or (ŝi, ŝM) are optimal for

Q ≥ Q̄

There exists another interior cutoff Q̂ such that if Q > Q̂ then ŝM is optimal. This follows

by noting that the value function, when (ŝi, ŝM) is optimal, is bounded from above

V (Q| if (ŝi, ŝM) is chosen)) < A(Q)− ci − d+ βi
B̄ − d
1− βi

. (39)

As the optimal policy is stationary, if only ŝM is ever chosen, it will always be chosen

thereafter, yielding a value
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V (Q| if ŝM is chosen) = B(Q)− d+ βiV (Q| if ŝM is chosen)

⇐⇒ V (Q| if ŝM is chosen) =
B(Q)− d

1− βi
(40)

The right side of (40) exceeds the right side of (39) when

B(Q)− A(Q) > −ci +
βi

1− βi
(B̄ −B(Q)). (41)

As the above inequality holds at Q = 1 for this domain of αi and A(Q) and B(Q) are

continuous in Q, the aforementioned cutoff Q̂ exists.

Let us show that for ci sufficiently high Q̂ < Q̄, i.e. the consumer will never experiment,

either always selecting ∅ or ŝM depending on the relation of Q0 and Q̄. If this is true, then

the stationarity of the policy implies

V (Q̄) =
D

1− βi
=
B(Q̄)− d

1− βi
(42)

Appealing to the upper bound on V (Q̄| if (ŝi, ŝM) is chosen)), we can select ci sufficiently

large such that the right side of (39) is less both terms in the equality of (42).

Next, we show that if d is not too large, there will be an open interval under which the

consumer experiments, i.e. Q̄ < Q̂. Suppose for a contradiction that for all αi ∈ (a1, b1) and

all d > 0, Q̂ ≤ Q̄. This implies again that equation (42) holds.

For all ε1 > 0, we can choose αi arbitrarily close to b1, such that for

C − ci < D < C − ci + ε1. (43)

Suppose we modify the policy to select (ŝi, ŝM) at Q̄. Then the value at Q̄ is given by

V (Q̄| if (ŝi, ŝM) is chosen)) = A(Q̄)− ci − d+ βiE[V (Q′)|Q̄, ŝi, ŝM ] (44)

We can write
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E[V (Q′)|Q̄, ŝi, ŝM ] =

Pr(Q′ > Q̄) · E[V (Q′)|Q′ > Q̄] + Pr(Q′ ≤ Q̄) · E[V (Q′)|Q′ ≤ Q̄] (45)

where all terms in the above equality condition on Q̄ and ŝi, ŝM . As E[V (Q′)|Q′ > Q̄] =

E[B(Q′)− d|Q′ > Q] > B(Q̄)−d
1−βi and E[V (Q′)|Q′ ≤ Q̄] = D

1−βi ,

V (Q̄| if (ŝi, ŝM) is chosen)) > A(Q̄)−ci−d+βi
D

1− βi
> A(Q̄)−C+D−ε1−d+βi

D

1− βi
(46)

where the inequality A(Q̄)−C+C− ci > A(Q̄)−C+D− ε1 follows from (43). For d and ε1

sufficiently small, V (Q̄| if (ŝi, ŝM) is chosen)) > V (Q̄| if ∅ is chosen)). Hence, the assumed

optimal policy is in fact suboptimal, implying a contradiction.

The proof for “experimentation” at αi = b1 and αi ∈ (a2, b2], is nearly identical to the proof

above.
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